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Cavity solitons in semiconductor microresonators: Existence, stability, and dynamical properties
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We apply a versatile numerical technique to establishing the existence of cavity solitons~CS! in a semicon-
ductor microresonator with bulk GaAs or multiple quantum well GaAs/AlGaAs as its active layer. Based on a
Newton method, our approach implies the evaluation of the linearized operator describing deviations from the
exact stationary state. The eigenvalues of this operator determine the dynamical stability of the CS. A typical
eigenspectrum contains a zero eigenvalue with which a ‘‘neutral mode’’ of the CS is associated. Such neutral
modes are characteristic of models with translational symmetry. All other eigenvalues typically have negative
real parts large enough to cause any excitations to die out in a few medium response times. The neutral mode
thus dominates the response to external random or deterministic perturbations, and its excitation induces a
simple translation of the CS, which are thus stable and robust. We show how to relate the speed with which a
CS moves under external perturbations to the projection of the perturbations on to the neutral mode, and give
some examples, including weak gradients on the driving field and interaction with other CS. Finally, we show
that the separatrix between two stable coexisting solutions: the homogeneous solution and the CS is the
interveningunstableCS solution. Our results are important with a view to future applications of CS to optical
information processing.

PACS number~s!: 42.65.Tg, 05.45.Yv, 42.70.Nq, 45.70.Qj
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I. INTRODUCTION

Cavity solitons~CS! have been predicted for a wide var
ety of nonlinear resonators both in presence@1# and in ab-
sence@2# of pattern-forming instabilities@3#. In particular,
recent works have shown the possibility of creating and c
trolling CS in semiconductor microresonators@both multiple
quantum well ~MQW! and bulk# @4–7#. Results achieved
therein pave the way to the application of CS as individua
addressable self-organized pixels, suitable for, e.g., recon
urable arrays, shift registers, and other basic applications
information encoding and processing@8,9#. Nevertheless,
theoretical analyses and predictions about CS stability,
bustness, and controllability are critical for observation a
in particular for their application. The pioneering works f
CS in semiconductor microresonators mainly relied th
analyses on the direct integration of model equations or
the numerical derivation of the stationary CS profile; t
former approach yields just the stable solutions~in particular
CS!, the latter offers a quantitative criterion to estimate t
degree of stability of a stationary solution~e.g., CS belong-
ing to the same branch!. As for robustness and controllabi
ity, a series of simulations have been performed to apprec
the effect of noise, input field gradients, and of the CS
mutual interaction@5,7#. The aim of this paper is to exploit
different and versatile technique, first applied to satura
absorbing media@8#, which allows us to simultaneously as
sess the existence, the stability, and the dynamical prope
of CS in semiconductor microresonators independently fr
the direct integration of dynamical equations. This meth
not unlike the shooting method introduced in@1#, yields the
system’s stationary solutions. Here the transverse Lapla
is evaluated by a fast Fourier transform~FFT!. From a suit-
PRE 621063-651X/2000/62~6!/8726~14!/$15.00
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able initial condition a Newton method is used to find so
tion~s! to the set of algebraic equations to which the mo
reduces. There are significant benefits with respect to di
simulation of the partial differential equations~PDE’s! de-
scribing the full dynamical model. For example, it can yie
all the unstable as well as the stable stationary solutio
With respect to the shooting method, it exhibits a much
duced sensitivity to the choice of initial conditions and to t
steepness of the solution branches; in addition it is less c
strained, and it can yield periodic solutions such as glo
patterns arising from a modulational instability~MI !. More-
over this method has proved generally much more cont
lable and less computationally demanding. Finally, an imp
tant feature of this method is the straightforward derivat
of the excitation modes of the CS, both the full eigensp
trum and the relative eigenvector subspace. This is of g
relevance with respect to the assessment of CS robustn
mutual interaction properties, and dynamical response to
chastic or deterministic perturbations. The sign of the eig
values’ real parts, of course, accounts for the CS stabi
and a comparison between their relative magnitudes offer
indication about the best operational parameters to optim
CS functionality. The idea is that in order to be considered
particlelike, CS must have all the internal modes w
damped; a situation which is shown to occur far from the e
points of the stability branch. In common with many tran
versely unbounded systems, both MQW and bulk mod
exhibit an eigenspectrum always containing a zero eig
value corresponding to the translational invariance of
original equations@8#. By inspecting the spatial profile of th
eigenvector associated to the least negative eigenvalue
by following it when the system is brought close to th
boundaries of the stable CS branch, one can make pre
tions on the destabilization pro-
8726 ©2000 The American Physical Society
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cess which destroys the CS at their existence limits. As
other dynamical properties, a fundamental role is shown
be played by the ‘‘neutral mode,’’ i.e., the eigenvector as
ciated to the zero eigenvalue, as has been found alread
other different models~e.g., the parametric Ginzburg-Landa
model @10#!. Interaction of cavity solitons in a degenera
optical parametric oscillator has recently been investiga
@11#, showing one stable bound state for in-phase CS.
this basis, the interaction properties of CS pairs and the
havior of CS in the presence of phase and/or intensity gr
ents in the input field profile have been analyzed. We sh
that the neutral mode dominates the response to pertu
tions; in particular we give an expression for the CS sp
for drifts induced by driving-field gradients; the speed is
rectly related to the projection of the perturbation onto
neutral mode. Finally, such arguments allow us to interp
the unstable branch of CS as a sort of separatrix between
two different basins of attraction of the homogeneous s
tionary profile and the stable solitonic solution. The evo
tion towards either ‘‘attractor’’ is dominated by a single u
stable mode and therefore the velocity of a CS disappea
or forming can be appreciated ‘‘a priori’’ with no need, in
principle, to lean on a direct simulation. Results obtained
the various instances are always compared to the direct s
lation of the model’s PDE’s, and the agreement is definit
good. For the sake of simplicity we have first developed
model in one dimension~1D!, both in Cartesian and cylin
drical coordinates; a straightforward 2D extension is unf
sible because the evaluation of a Jacobian for a systemN
equations discretized on a grid ofM3M spatial points in-
volves extreme computational efforts. Nevertheless we h
investigated also this last situation by introducing some s
plifying assumptions. This paper is organized as follow
Section II is devoted to a brief review of the MQW and bu
semiconductor models. Section III contains the descript
of the numerical method adopted to find stationary soluti
and their stability. In Sec. IV we consider the 1D case
two particular range parameters as found in@5,7# and in Sec.
V we study the 2D situation exploiting the radial symme
of CS. The last part of the paper is devoted to the study
CS dynamical properties. In Sec. VI an evolution equation
derived to describe the deviation from stationary solutio
due to a perturbation; we derive the expression for the
speed and study the drift velocity as well as the interact
properties of CS for both MQW and bulk model. The ne
subsection contains the explanation we gave to the unst
CS branch as a separatrix. Section VII is devoted to con
sions.

II. THE DYNAMICAL EQUATIONS

The system we are considering consists of an optical c
ity containing a nonlinear medium and driven by an exter
coherent field; the nonlinear medium is either a MQW o
bulk sample of GaAs. In the slowly varying envelope a
proximation and in the mean-field limit the dynamical equ
tions governing the electric field inside the cavity and t
carrier density of the active material take the form@5,6#

]E

]t
52~11h1 i u!E1EI1 i SxnlE1 i ¹'

2 E, ~2.1a!
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]t
52g@N1bN22Im~xnl!uEu22d ¹'

2 N#, ~2.1b!

where E and EI are the normalized slowly varying ampl
tudes of the intracavity field and external driving field, r
spectively;u is the cavity detuning;h is the linear absorption
coefficient due to the material in the regions between
semiconductor and the mirrors;S is the bistability param-
eter;N is the carrier density scaled to its transparency val
g andb are the normalized decay rates of the carrier den
that describe the nonradiative and radiative carrier recom
nation, respectively;d is the diffusion coefficient.

The transverse Laplacian, which describes diffraction
the paraxial approximation, is defined as

¹'
2 5

]2

]x2
1

]2

]y2
5

]2

]r 2
1

1

r

]

]r
1

1

r 2

]2

]f2
, ~2.2!

where (x,y) are Cartesian and (r ,f) polar coordinates, in
the transverse plane. Below we will consider for simplic
that the driving fieldEI is independent of the transverse c
ordinates, i.e., a plane wave. The results we derive will
approximately valid for cavity solitons supported by an inp
beam much broader than the individual CS.

The complex susceptibilityxnl describes the nature of th
radiation-matter interaction and can be satisfactorily m
eled @4–6# for both the MQW and the bulk cases. In MQW
structures we consider an optical nonlinearity governed
an excitonic resonance and describedvia a Lorentzian curve.
A linear dependence ofxnl on the carrier densityN is as-
sumed. The radiation-matter interaction is therefore
scribed by

xnl~N,v0!52
1

Im~Q!
Q~N21! ~2.3!

with Q5(D1 i )/(11D2); hereD5(ve2v0)/ge is the ex-
citonic detuning, whereve andge are the central frequenc
and the halfwidth of the excitonic line, respectively, andv0
is the frequency of the input field. Under this assumption a
introducingC5S/@2 Im(Q)# Eqs.~2.1a! and~2.1b! recover
the original form considered in@4,5#.

The case of bulk medium@6,7# is interesting for severa
reasons. First of all, bulk samples are easier to grow and
be architectured with high accuracy; second, they offer
possibility of high levels of nonlinearity. Nevertheless th
model is more complex and numerical simulations more
manding. Adopting the quasiequilibrium approximation t
complex susceptibility for the free carriers takes the form

xnl~N,v0!52
i

e0\VA
(

kW
umku2

f ek~N!1 f hk~N!21

i ~vk2v0!1gp
,

~2.4!

where kW is the carrier momentum,mk is the dipole matrix
element between the valence and the conduction band~cal-
culated in@13,14#!, gp is the polarization decay rate~about
1013s21), and\vk5egap1\2k2/2mR is the transition energy
at the carrier momentumk, mR being the electron-heavy hol
reduced mass@15#. VA is the active volume. Thef ek,hk(N)
are Fermi-Dirac distributions for electrons and holes, resp
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tively. Two elements are then introduced phenomenolo
cally to properly describe the behavior of the bulk medium
the regimes of interest; one is band-gap renormalization
the other is the Urbach tail. Similarly to the MQW case, w
define the band-gap detuning parameterD5(vgap2v0)/gp
wherevgap is the band-edge transition frequency andv0 is
the frequency of the input field. For more details about
bulk model we refer to@6#; at this stage it is worth noting
that, with respect to the MQW model, the dependence oN
of the bulk susceptibility is highly implicit.

III. STATIONARY SOLUTIONS AND STABILITY

The model consists of three coupled nonlinear tim
dependent PDE’s, namely Eq.~2.1a!, its complex conjugate
and Eq.~2.1b!. We opt for ReE, Im E, andN as our inde-
pendent variables. In general they are functions of both t
and space (t;x,y) but at this stage, we are primarily inte
ested in stationary solutions;] tE505] tN. Analytical treat-
ment is possible only for the special case of homogene
stationary solutions, which means to neglect the Laplacia
Eqs.~2.1!, but not for more general cases, e.g., cavity soli
solutions. The problem must thus be treated numerically
what follows we apply a numerical technique, previous
applied@8# for a simpler model, to a semiconductor micr
resonator. For simplicity we describe the technique only
relation to the electric fieldE although similar consideration
apply to the carrier densityN.

Consider a square gridM3M (M52n with n integer is
best, for efficient use of the fast Fourier transform alg
rithm!; on this grid we discretize the transverse plane (x,y)
and consider for each grid point (i , j ), with i , j 51 . . . ,M ,
the discretized field valuesEi , j5E(xi ,yj )[E( i , j ). Our first
goal is the evaluation of the transverse Laplacian at each
point, i.e., (¹'

2 E) i , j . On the assumption of periodic bound
ary conditions, valid for the models under study for a lar
enough domain, we numerically evaluate the spatial der
tives using a fast Fourier transform~FFT! algorithm to com-
pute them in Fourier space, where¹'

2 →2k2. Thus the spa-
tial second derivatives are numerically evaluated as follo

E~x,y!→E~ i , j !→
F

Ẽ~ki ,kj !→2~ki
21kj

2!Ẽ →
F 21

~¹'
2 E! i , j ,

~3.1!

where F denotes Fourier transformation andF 21 denotes
back transformation. Starting from the set of values wh
the variable takes over the whole grid we end with an ar
that corresponds for eachi , j to the transverse Laplacian o
the variable at that grid point. After evaluation of all th
spatial derivatives, we have ateachgrid point three nonlin-
ear algebraic equations for three variables, all coupled
gethervia the transverse Laplacian.

The problem has now been reformulated so that a New
method can be used to find solution~s! of the nonlinear sys-
tem. In general, there will be multiple solutions for any giv
set of parameters, and which one is found by the New
method depends on the initial conditions supplied. In parti
lar, CS solutions are found from initial isolated peaks
suitable width and amplitude. Once a CS solution is loca
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it can usually be tracked efficiently in parameter space
using it as input to the system with slightly modified para
eters.

The benefit of such a procedure over the more dir
simulation of the full time-dependent PDE’s is that it can,
principle, yield all the stationary solutions, not just thos
which are dynamically stable. Furthermore, once a station
solution has been found, its stability can be determined
studied by inspecting the eigenvalues and eigenvectors o
Jacobian matrix obtained by linearizing the system around
Note that the Jacobian matrix at the stationary solution
needed by the Newton method, and so can be returned as
of its outputs. If any of the eigenvalues of the Jacobian h
a positive real part then the solution is unstable. The ass
ated eigenvector gives the spatial profile of the correspo
ing eigenmode, whether stable, unstable, or neutral. The
genvector corresponding to an eigenvalue with positive r
part will determine the spatial distortion of the unstable s
lution as the instability develops. Note that the Jacobian
its eigensystem emerge from any Newton method, not
one using the FFT@12#.

First, for simplicity we consider a one-dimensional mod
in which the transverse Laplacian is simply¹'

2 5]x
2 and the

discretization process takes place on a line; we refer to S
V for the two-dimensional case. On a linear grid ofM points
we have the following system of 3M coupled nonlinear
equations:

2h̄Er
( l )1uEi

( l )1EI
( l )2S@Re~x!( l )Ei

( l )1Im~x!( l )Er
( l )#

2~]x
2Ei !

( l )50, ~3.2a!

2h̄~Ei !
( l )2u~Er !

( l )1S@Re~x!( l )~Er !
( l )2Im~x!( l )~Ei !

( l )#

1~]x
2Er !

( l )50, ~3.2b!

2g@N( l )1bN( l )22Im~x!( l )@~Er
2!( l )1~Ei

2!( l )#2d~]x
2N!( l )#

50, ~3.2c!

where the electric fieldE has been split into its realEr and
imaginaryEi part; h̄5(11h) and l 51, . . . ,M refer to the
l th grid point; the 3M unknown variables areEr

( l ) , Ei
( l ) , and

N( l ).

IV. 1D MODEL

A. MQW

In the following we will analyze the resonant (D50) case
for the MQW model; other parameters areC530, u523,
d50.2, h50.25, b51.6, and g50.002. From previous
works @5# we already know the expected scenario in tw
dimensions; in 1D we expect to find again, in almost t
same range of values, soliton and roll solutions. The hom
geneous steady-state curve is shown in Fig. 1 where s
and dotted line of the S-shaped curve refers to stable
unstable homogeneous solution, respectively.~The stability
of the homogeneous solution can be assessed directly
standard techniques, but a Newton method could also be
plied to it.! Starting with an initial condition correspondin
to a soliton solution as obtained from a direct integration
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Eqs.~2.1! we were able to find a whole branch of stable C
and moreover also an unstable branch. The stable so
branch is represented in Fig. 1 by a thicker solid line and
unstable branch by a thicker dashed line; as can be seen
Fig. 1 the agreement between the dynamical simulati
~diamonds! and the stationary solutions obtained by solvi
directly the system of nonlinear equations~3.2! is excellent.
Thus we have two completely different ways to obtain n
merically the CS solutions of our physical system and t
reinforces claims that they are not artefacts nor dependen
the particular numerical method. Moreover, the unsta
branch, which is found only by our stationary solution a
proach, gives new insight into the mechanisms that unde
pattern and soliton formation; it is clear from inspection
Fig. 1 that the unstable CS branch bifurcates exactly at
modulational instability~MI ! point where the homogeneou
solution becomes unstable against pattern formation.~For
these particular parameters case MI occurs just at the tur
point of the homogeneous steady-state curve!.

The stability of CS, as previously mentioned, is read
derived from the solution method used here. We plot a
function of the input intensity in Fig. 2 some of the pertu

FIG. 1. 1D MQW model. Steady-state curve of the homog
neous solution and results of numerical evaluations and of sim
tions for cavity soliton and roll stationary solutions. Parameters
D50, C530, u523, d50.2, h50.25, b51.6, andg50.002.
T.P. indicates the turning point of the homogeneous steady-s
curve.
on
e
om
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e

ng

a

bation eigenvalues of the CS, to be precise the six m
‘‘dangerous’’ i.e., the least-negative eigenvalues. T
negative-slope branch is characterized throughout its e
tence range by the presence of a single eigenvalue with p
tive real part. Note that both branches always exhibit a z
eigenvalue, i.e., aneutral mode. This is due to the transla
tional symmetry of the problem. This property is of gre
importance for applications, as will be discussed below. T
neutral mode has an eigenvector which is proportional to
gradient of the CS state itself, because the gradient oper
is the generator of translations. In Fig. 3 we have displa
the field E and the carrier densityN for a typical soliton

solution, their derivatives and the neutral modeuW 0 corre-
sponding toE and N. The close agreement with the exa
analytical prediction confirms that discretizing on a fin
grid with periodic boundary conditions gives a good appro
mation to the true problem. As shown in Fig. 2~a!, for both
decreasing and increasing values of the input field the ca
soliton loses stability when a second eigenvalue approac
zero.

The lower limit corresponds to the turning point at whic
the upper and lower CS branches merge. It is easy to s
that this merger~a saddle-node bifurcation! necessarily has
an eigenvalue approach zero for each branch. In Fig. 4

plot the three components of the eigenvectoruW 1 which will
destabilize the stable cavity soliton at the left end of t
branch; both components related to the electric field
highly localized on the cavity soliton and resemble it
shape, while the component corresponding to the the ca
density has a dip at the soliton peak position and t
maxima on the sides. Subtracting this mode from the CS
clearly cause it to shrink, and thus this unstable mode can
considered as a switch-off mode~the same way when we us
a localized Gaussian beamp out of phase with respect to th
background to switch off a CS! @5#. When the input intensity
is only slightly increased, it can be seen from Fig. 2 that t
mode becomes even more highly damped than the o
modes shown. Over the central region of their existence,
CS are thus rather stable. It is worth noting that the mag
tude of the largest eigenvalues is comparable to that ofg and
this means that any perturbation dies out in a few respo
times of the medium~which is many cavity response times
our models!. Thus all the internal degrees of freedom
these CS are strongly damped, leaving only their tran
tional freedom, giving them a particlelike character.

-
a-
e

te
s
rts

int
FIG. 2. 1D MQW model. Parameters are a
Fig. 1. The six eigenvalues with largest real pa
as a function of the input field.~a! Positive-slope
~stable! CS branch;~b! Negative-slope~unstable!
CS branch. T.P. corresponds to the turning po
of the homogeneous steady-state curve.
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FIG. 3. 1D MQW model. Pa-
rameters are as Fig. 1;uEI u538.0.
Top: the real and imaginary par
of the electric field and the carrie
density relative to a stable CS
Center: the corresponding neutr
modes are plotted; Bottom: th
calculated derivative of the CS
components.
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Turning now to the right side of the stable soliton branc

the eigenvectoruW 1 that first destabilizes the CS has a co
pletely different shape from the soliton. This is shown in F
5, where we have plotted the three components, as usua
this eigenvector and for an immediate comparison we h
superimposed on the same plot the soliton itself. The de
bilizing mode is clearly associated with the homogene
background, rather than being localizsed on the CS. Thi
to be expected, since at this end of the branch~high injected
fields uEI u) we approach the turning point of the homog
neous steady-state curve and so the CS destabilization ca
related to that of the background. This emphasizes th
stable background is anecessarycondition for a stable cavity
soliton. This picture also reinforces the role of the lowe
branch homogeneous steady-state solution as a blackb
,

-
.
of
e
a-
s
is

be
a

-
ard

on which it is possible to ‘‘write’’ cavity solitons@4,5#; but a
blackboard is an essential prerequisite for such writing.
can examine what happens to a soliton when we increase
value of the input field just slightly above the value corr
sponding to the turning point. Figure 6 is composed of
frames that show the evolution of the soliton towards a r
pattern. Starting from the unperturbed soliton, the homo
neous solution at the boundary of the grid begins to switch
the upper branch; eventually the soliton can no longer
supported and finally a stable roll pattern emerges. Never
less a strong link to the single CS is evidenced by the f
that the minimum and the maximum values of the amplitu
of this pattern are very close to those of the single CS, so
the CS can here be regarded as a minimal, self-confin
element of a global pattern. This is also evidenced in Fig
c-
t

le

d

FIG. 4. 1D MQW model. Pa-
rameters are as Fig. 1. Eigenve
tor corresponding to the larges
nonzero eigenvalue of the stab
CS atuEI u533.476.~a! and~b! re-
fer, respectively, to the real an
imaginary part of the electric field
and ~c! to the carrier density.
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where stable and unstable rolls branches are also shown
2D counterpart of these multiple localized structures
hexagons, as shown in@5#.

B. Bulk

We analyze now the one-dimensional bulk model and
particular we consider the following set of parameters,D
51, S580, u529, d50.2, b50, andg50.0014, which
have proved to be rather close to experimental conditi
@6,7#. The overall picture here is rather different with respe
to the MQW case; the lower branch of the homogene

FIG. 5. 1D MQW model. Parameters are as Fig. 1. Eigenve
corresponding to the largest nonzero eigenvalue of the stable C
uEI u543.72. Continuous and dotted lines refer, respectively, to
real and imaginary part of the electric field, and dash-dotted lin
the carrier density. The thicker line is the cavity soliton. The l
ordinate refers to the perturbation mode, the right to the CS.
he
e
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s
t
s

steady-state solution is no longer entirely stable but a sm
portion is affected by a modulational instability~MI ! close to
the turning point~see Fig. 7!. More importantly, the shape o
the cavity soliton is different; for the bulk model below th
bandgap its profile shows damped oscillating tails, n
present for the MQW case, and the branch of existenc
much more restricted. So the analysis of CS as station
solutions can give us some insights and possibly link
different shape of solitons to different behaviors.

First, as usual, we compare the results obtained by
namical simulations to those obtained via direct resolution
the stationary system, and as can be seen from Fig. 7
agreement is excellent. Following the negative-slope
branch we find again that the mechanism underlying th

r
at

e
o
t

FIG. 7. 1D bulk model. Steady-state curve of the homogene
solution and results of numerical evaluations and of simulations
cavity soliton and roll stationary solutions. Parameters areD51,
S580, u529, d50.2, h50, b50, andg50.0014.
s

FIG. 6. 1D MQW model. Pa-

rameters are as Fig. 1. Six frame
corresponding to the evolution
~from top-left to bottom-right! of
a soliton foruEI u543.8.
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FIG. 8. 1D bulk model. Parameters are as F
7. The six eigenvalues with largest real parts a
function of the input field.~a! Positive-slope
~stable! CS branch;~b! Negaitve slope~unstable!
CS branch.
n
be
-
oi

e
iz
a
g
b
il
.

the

ton
the
en-
ei-
the

t the

ude
existence is linked to MI. In fact the unstable branch co
nects exactly to the point where the stationary solution
comes modulationally unstable~this is a stronger confirma
tion than in the MQW case because there the turning p
coincides with the onset of MI!. We plot as a function of the
input intensity in Fig. 8 some of the perturbation eigenvalu
of the CS. The negative-slope branch is again character
by the presence of an eigenvalue with a positive real p
and thus unstable. There always is a zero eigenvalue, a
related to translational invariance; on both sides of sta
branch a second eigenvalue approaches zero and destab
the stationary solution. As done in the MQW case, in Fig
-
-
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s
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we have displayed for a typical stable CS the field and
carrier density, their derivatives and the neutral modeuW 0.

Let us now examine the mechanisms by which the soli
loses its stability. On the left side of the stable CS branch
picture is as for the MQW model; the first dangerous eig
vector uW 1, the one corresponding to the largest nonzero
genvalue, has the same field shape of the soliton and
component related to the carrier density presents a dip a
soliton peak position~see Fig. 10!. As for the MQW model,
over the central region of the stable CS branch the magnit
of the largest eigenvalues is comparable to the value ofg so
that the CS are rather stable and almost particlelike.
t
r
;
al
e

FIG. 9. 1D bulk model. Pa-
rameters are as Fig. 7;uEI u537.0.
Top: the real and imaginary par
of the electric field and the carrie
density relative to a stable CS
Center: the corresponding neutr
modes are plotted; Bottom: th
calculated derivative of the CS
components.
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FIG. 10. 1D bulk model. Pa-
rameters are as Fig. 7. Eigenve
tor corresponding to the larges
nonzero eigenvalue of the stab
CS atuEI u536.488.~a! and~b! re-
fers, respectively, to the real an
imaginary part of the electric field
and ~c! to the carrier density.
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A different situation holds for the right side of the branc
for high input intensity; the first dangerous eigenmodeuW 1
reported in Fig. 11 is completely different in shape with r
spect to MQW model and in this case the destabilizat
mechanism is clearly localized on the soliton itself. Inde
from Fig. 7 we see that when the upper CS branch termin
there is still a substantial portion of the homogeneous s
tion branch available as a stable background. The shap
this eigenvector suggests instead that the soliton solution
comes unstable because its subpeaks tend to grow and
the soliton evolves towards a roll pattern. Indeed this see
to be the case if we look at Fig. 12; here we have reported
frames corresponding to the evolution of an unstable sol
for uEI u538.0. The side peaks of the soliton grow more a
more until a roll solution is reached. Differently from MQW
this pattern cannot easily be considered as a multisol
solution because the minimum value of the field is qu
different from the soliton one, and the whole structure
more regular and quasisinusoidal. This is also evidence
Fig. 7 where stable and unstable rolls branches are
shown. The temporal evolution shown in Fig. 12 sugge
that a ‘‘3CS’’ state@8# destabilizes the CS, but it is itse
unstable so that essentially a switching-wave forms, conv
ing the homogeneous background into a coexisting roll p
tern.

V. TWO DIMENSIONAL EXTENSION

The work up to this point is based on a one-dimensio
version of the evolution Eqs.~2.1a! and ~2.1b! which basi-
cally means that we consider only one transverse coordin
In a two-dimensional extension~2D! a second transverse co
ordinate has to be considered. With respect to 1D nothing
principle, changes, we could now simply discretize on
square grid. In practice, this involves a complex Jacob
matrix which is too big to handle. Nevertheless, if we restr
ourselves to radially symmetric solutions, the problem can
simplified; since in polar coordinates (r ,f) the solution de-
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pends solely onr and not on the anglef. Under this assump-
tion we are again faced with a one-dimensional probl
where we discretize inr, and the Jacobian has the same s
as in the previous 1D work. Note that the mixed term (1r )
3(]/]r ) can be evaluated by simply dividing the first d
rivative, as determined from Fourier space, byr.

The analysis of the MQW model does not present a
thing new; we have again obtained both stable and unst
branches of solitons and the main difference is that for
the soliton’s peak intensity is bigger than for 1D. Once mo
the agreement with the dynamical simulations is excelle
Our 1D findings regarding eigenvalues and eigenvec
similarly extend directly to the 2D case.

For the bulk case some surprises arise, as can be
from Fig. 13. The soliton branches show a spiraling behav
which suggests possible bistability between solitons of d
ferent intensity. We show in the left graph of Fig. 13 th
results obtained with the usual stability analysis. Accord
to this, the lower positive-slope branch of the spiral sho
be stable, but the dynamical simulations show instabil
Further, for input fields greater than 38.5 the peak inten
of the soliton decreases until the branch turns back at
proximately uEI u539.5. This portion of soliton branch
should be also stable but the dynamical program shows
stability for input fields greater than 38.5. This discrepan
with respect to the full 2D dynamical simulation can be e
ily explained, and agreement restored by an extension of
stability analysis. The Jacobian found in the search for
lindrically symmetric solutions governs radial stability onl
i.e., with respect to perturbations which are themselves
lindrically symmetric. We must also, however, consider a
muthally varying perturbations. So let us consider the f
lowing form for the perturbation:

«5R~r !r umueimf, ~5.1!

where we allow for an azimuthal dependencevia m. After
some calculations we obtain
c-
t

le

d

FIG. 11. 1D bulk model. Pa-
rameters are as Fig. 7. Eigenve
tor corresponding to the larges
nonzero eigenvalue of the stab
CS atuEI u537.87.~a! and ~b! re-
fers, respectively, to the real an
imaginary part of the electric field
and ~c! to the carrier density.
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FIG. 12. 1D bulk model. Pa-
rameters are as Fig. 7. Six frame
corresponding to the evolution
~from top-left to bottom-right! of
a soliton foruEI u538.0.
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2 «5S d2R

dr2
1

~2umu11!

r

dR

dr D r umueimf. ~5.2!

When we perform the stability analysis all the termsr umueimf

cancel out and the contribution of the transverse Laplacia
Eq. ~5.2! to the Jacobian is due only to the term in rou
brackets. The term (2umu11) accounts for azimuthal pertur
bation; for m50 we recover the usual radial case but f
higher values we introduce azimuthal effects which contr
ute to the the eigenvalues of the Jacobian. We show in
14 what happens to the eigenvalues for different values om.
Starting from the left we havem50 that correspond to
purely radial perturbations, with only negative eigenvalu
Next we have the casem561 where there is a neutra
mode; it is easy to show this is again associated with
translational symmetry. Finally, we have the casem562
and we see that for this value the upper CS branch lose
stability exactly at 38.5 according to the dynamical simu
tions. In Fig. 15 we report six frames of a dynamical sim
lation which show the destabilization of a cavity soliton f
an input value of the field slightly above 38.5. It clear
exhibits instabilityvia an asymmetric deformation ofm52
type. The eventual roll structure is influenced by the perio
boundary conditions, but the onset of the instability sho
be accurately portrayed. Finally, note that the band of ne
tive eigenvalues with values in the range21.0,l,20.5
in

-
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.

e

its
-
-

c
d
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looks almost the same for eachm. This shows that these ar
indeed background modes, insensitive to the phase profi
the soliton core.

VI. RESPONSE TO PERTURBATIONS

Next we analyze the effect of perturbations on the sta
CS solutions described so far. In view of possible appli
tions to optical processing schemes this response merits
vestigation. As we shall see the eigenvalues and eigenvec
of the CS Jacobian again play an important role.

Let us write the system equations in the concise vecto
form

]EW

]t
5 fW~EW !1EW I , ~6.1!

whereEW is the vector ofall unknown variables,fW is a generic
nonlinear function, andEW I is the vector which describes th
driving field~s!. We have to consider two different types o
perturbation and treat them in a slightly different wa
Namely external perturbations of the driving field~they
could be due to noise as well as imposed amplitude or ph
perturbation of the input fields!, and internal perturbations
which are related directly to the dependent variables and
ter into the evaluation of the nonlinear functionfW . These last
s-

e
-
l

FIG. 13. 2D bulk model. Pa-
rameters are as Fig. 7. Stability a
signations on the left refer to
purely radial perturbations, thos
on the right include azimuthal per
turbations also. The dynamica
simulations agree only with the
latter.
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FIG. 14. 2D bulk model. Parameters are
Fig. 7. Perturbation eigenvalues as a function
the input field for the upper CS branch of Fig. 1
The perturbations are of the form~5.1! with azi-
muthal indices: m50 ~left!; umu51 ~center!;
umu52 ~right!.
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correspond to fluctuations in the values of parameters suc
u as well as to perturbations due to interactions betw
cavity solitons.

External perturbation.Let EW S be a stationary solution
⇒]EW S /]t505 fW(EW S)1EW I and consider a small perturbatio
on the external driving field

]EW

]t
5 fW~EW !1EW I1PW ext . ~6.2!

Due to the perturbation the solution suffers a slight deviat
from the stationary value and can be written asEW 5EW S1«W ;
inserting this into Eq.~6.2! we obtain

]«W

]t
5 fW~EW S!1S d fW

dEW
D

EW S

«W 1EW I1PW ext5JS•«W 1PW ext ,

~6.3!

whereJS is the Jacobian of the stationary solution~exactly as
used in the Newton solution method!.

Internal perturbation.In this case the perturbation is re
lated to the intracavity field itself and so we need to consi
its effect on the evaluation of the nonlinear functionfW ;

]EW

]t
5 fW~EW 1PW int!1EW I , ~6.4!
as
n

n

r

nevertheless we assume again thatEW 5EW S1«W . With this as-
sumption the evolution equation for«W becomes

]«W

]t
5 fW~EW S!1S d fW

dEW
D

EW S

~«W 1PW int!1EW I5JS•~«W 1PW int!.

~6.5!

Thus in both cases it is possible to write the same form
evolution equation for the deviation from the stationary s
lution:

]«W

]t
5JS•«W 1PW . ~6.6!

At this point we assume that«W can be expressed in terms o
the basis$uW i% formed by the eigenvectors of the Jacobian

«W 5(
j

aj uuW j& where JSuuW j&5l j uuW j&

and Eq.~6.6! becomes

(
j

daj

dt
uuW j&5JS(

j
aj uuW j&1PW . ~6.7!

To further analyze Eq.~6.7! we recall and apply the concep
of biorthogonality. LetJS

T be the transposed matrix ofJS and
as
n

i-
FIG. 15. 2D bulk model. Parameters are
Fig. 7. Dynamical evolution of a soliton solutio
for input field uEI u538.6; starting from the top
left it is possible to see how the soliton destab
lizes via an azimuthal instability.



-
o
de
n

th
in
e

c
rt

b
tr
e

o
b

h

o-

ba-
S;

ur-

ze
ns,
ing
th

ge-

q.
e
nput
W
ree-

he
et

e

rift
r
nds
ing
th/

8736 PRE 62MAGGIPINTO, BRAMBILLA, HARKNESS, AND FIRTH
let ^vW j uJS
T5^vW j uz j ; it can be shown thatl j5z j and that,

when properly normalized,̂vW i uuW j&5d i j . These relations ex
presses the biorthogonality properties of eigenvectors of
erators which are not self-adjoint. We can project both si
of Eq. ~6.7! on ^vW i u and exploit the biorthogonality relatio
obtaining:

^vW i uuW i&
dai

dt
5^vW i uuW i&l iai1^vW i uPW &⇒ ~6.8!

dai

dt
5l iai1

1

^vW i uuW i&
^vW i uPW &. ~6.9!

For generality, we have not normalized the vector basis.
It is reasonable to assume that; i ai(t50)50 which

physically means that when the perturbation is turned on,
corresponding deviation from the stationary solution beg
to grow from zero. With this initial condition we obtain th
following expressions for the perturbation coefficientsai :

ai~ t !5
1

l i

^vW i uPW &

^vW i uuW i&
~el i t21! if l iÞ0, ~6.10!

a0~ t !5
^vW 0uPW &

^vW 0uuW 0&
t for l50. ~6.11!

Evidently for long times (t→`) the behavior of eachai
strongly depends upon the corresponding eigenvaluel i .
ProvidedEW S is a stable stationary solution, all the eigenve
tors exceptuuW 0& have eigenvalues with negative real pa
This means that, ast→`, a0 dominates over all otherai .
Thus the effect of any perturbation on a stationary sta
state is essentially determined by its overlap with the neu
mode of the transposed matrix of the Jacobian. Thus we n
only consider the rather simple equation

da0

dt
5

1

^vW 0uuW 0&
^vW 0uPW &. ~6.12!

Now, the physical meaning afda0 /dt is the velocity of the
CS under the influence of the perturbation. To see this, n
that after a transient the perturbation of the stationary sta
solution is simply«W 5a0uuW 0& so thatEW 5EW S1a0uuW 0&; recall
now from Sec. IV that the neutral mode is proportional to t
gradient of the solution itself, i.e.,~in 1D for simplicity!:

uuW 0&5a
dEW S

dx
⇒EW 5EW S1a0a

dEW S

dx
. ~6.13!

Consider now a soliton slightly displaced from its initial p
sition x0 and perform a first-order expansion aroundx0:

EW S~x01j!5EW S~x0!1j
dEW S~x0!

dx
. ~6.14!

From a direct comparison of Eqs.~6.13! and ~6.14! we see
thatj5a0a and this implies that the velocityv of the soliton
is
p-
s
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v5
dj

dt
5

da0

dt
a5a

^vW 0uPW &

^vW 0uuW 0&
5

^vW 0uPW &

K vW 0UdEW S

dx L . ~6.15!

So we have shown that only the projection of the pertur
tion on the neutral mode is relevant for the dynamics of C
moreover the neutral mode is an odd function ofx and so, as
a further restriction, only the odd component of any pert
bation is important.

Among the various types of perturbations, we analy
three of particular relevance. Two are external perturbatio
a phase gradient and an amplitude gradient in the driv
field. The other is internal, perturbation of a soliton wi
respect to another soliton.

In the case of a phase gradient imposed on the homo
neous backgroundEI

(h) the input field takes the following
form:

EI~x!5EI
(h)eikx.EI

(h)~11 ikx!, ~6.16!

where the last relation holds forkx sufficiently small; then
the perturbation isPW 5EI

(h)ikx. Similarly an amplitude gra-

dient yieldsPW 5EI
(h)kx. Inserting these perturbations into E

~6.15! we can calculate the drift velocity of a CS in th
presence of a weak phase or amplitude gradient on the i
field. In Figs. 16 and 17 we show the results for the MQ
and the bulk model, respectively; in both cases the ag
ment with a direct evaluation of the drift velocityvia dy-
namical simulations is extremely good. Now consider t
perturbation of a soliton with respect to another soliton. L
EW 1 represent the first soliton, located atx1, andEW 2 the sec-
ond, atx2, whereux22x1u is large enough compared to th
soliton width, so that the effect ofEW 2 at the locationx1 can

FIG. 16. 1D MQW model. Parameters are as Fig. 1. CS d
velocity vs gradient coefficientk. Solid and dash-dotted lines refe
to phase gradient and amplitude gradient, respectively. Diamo
and stars refer to evaluation of CS drift velocity in a correspond
dynamical simulation. For a typical microresonator 1 unit leng
unit time '353104 mm/ms.
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be considered a small perturbation toEW 1. Being an internal
perturbation, in this case we havePW 5J1•EW 2; inserting this
into Eq. ~6.15! we can calculate the velocity of the first so
ton induced by the second one. By symmetry, the rela
velocity is twice this. Note that the interaction ‘‘force’’ gov
erns the relative velocity, not the relative acceleration. A
separation distance at which the mutual perturbation v
ishes is thus a ‘‘bound state’’ of the two CS~maybe an
unstable one!. In Figs. 18 and 19 we report the results o
tained in the MQW and in the bulk model, respectively. B
convention the relative velocity is negative for two solito
moving apart, positive for the opposite case.

For the MQW case no equilibrium distance is predicte
two solitons should either attract each other or should h
negligible interaction. But in fact dynamical simulation
have shown that there is actually one equilibrium positi
while two CS are effectively independent when their rec
rocal distance is greater than 50 grid points. So the pertu
tion method predicts quite well the noninteraction distan
but fails to predict the bound state. In the bulk model t
situation is more complicated; as can be seen from Fig.
there are several interequilibrium distances, indicated w
stars and diamonds. But, contrary to the MQW case, here
method is very predictive and we were able to findvia direct

FIG. 17. 1D bulk model. Parameters are as Fig. 7. Otherwis
Fig. 16.
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dynamical simulations all the bound states marked with st
For each of these, a change of separation results in a rela
velocity of opposite sign, so the stability of these bou
states is also correctly predicted. The two zeroes mar
with diamonds do not correspond to stable bound states:
the two solitons are themselves unstable and evolve tow
a roll solution.

Separatrix

An important result concerning the role of the unstab
CS branch acting as a separatrix can be obtained explo
the considerations developed so far. We recall that the
namics of the unstable CS, both in MQW and in bulk mod
is governed by a single eigenmode, with an eigenvec
whose shape is not dissimilar from the unstable soliton.
ing essentially a single-mode behavior we can anticipate
the locus of the unstable CS will act as a separatrix of
two stable coexisting solutions: the homogeneous solu
and the CS. Dynamical simulations confirm this role for bo
MQW and bulk, in both 1D and in 2D; to check this we ha
initialized with an unstable soliton. If we just slightly in
crease the input field then the field evolves towards a sta
soliton, while if we slightly decrease the input field it deca
to the homogeneous background.

This behavior follows from the perturbation response
the unstable soliton, since, according to Eq.~6.11!, the mode
amplitude that prevails is the one related to the eigenve
with positive eigenvalue, thus

a1~ t !;
^vW 1uPW &

^vW 1uuW 1&
t, ~6.17!

where1 refers to the single unstable mode. The perturb
solution can be written as follows:

EW 5EW S1«W ;EW S1a1uuW 1&5EW S1
^vW 1uPW &

^vW 1uuW 1&
tuuW 1&.

~6.18!

The shape ofuuW 1& is very similar to that of the soliton itself
and so it will act as a switch-off or a switch-on agent acco
ing to the sign of the coefficient. ConsideringPW as a slight
deviation from the input field, our checks show that an
crease in the input field correspond to a positive sign, wh
a decrease to a negative sign, thus confirming the role of
unstable branch as a separatrix. Our analysis also shows

as
as
FIG. 18. 1D MQW model. Parameters are
Fig. 1. Interaction of two cavity solitons atuEI u
538.0. Half width at hal maximum~HFHM! of a
CS is 15 grid points.x axis: their separation in
terms of number of grid points.y axis: relative
velocity of the solitons~negative when moving
apart, units arbitrary!. For a typical microresona-
tor 1 unit length ~u. l.!/unit time ~u. t.! '35
3104 mm/ms.
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FIG. 19. 1D bulk model. Parameters are
Fig. 7. Interaction of two cavity solitons atuEI u
537.0. HFHM of a CS is 10 grid points. Other
wise as Fig. 18.
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the unstable soliton is in factmetastable, in that it is an
attractor for all nearby states except those proportional to
single unstable mode. Address pulses will thus sponta
ously reshape themselves into the shape of the unstable
ton ~if ‘‘nearby’’ !, before evolving away along its unstab
manifold, either to the stable CS or to the flat solution.

In addition we have checked that the evolution of an u
stable soliton towards a stable soliton has a temporal be
ior proportional to (el1t21) wherel1 is the eigenvalue of
the unstable mode; this occurs up to a time scale long c
pared to 1/l1 and is in accordance with Eq.~6.10!. The same
happens when the unstable soliton evolves towards the
mogeneous solution.

VII. CONCLUSIONS

In this work we have applied a seminumerical meth
developed on fairly simple nonlinear optical models@8# to
investigate cavity soliton properties in a semiconductor
croresonator with a bulk GaAs or MQW GaAs/AlGaAs a
tive layer. This approach not only allows us to find the s
tionary solutions, including CS, as the method adopted
@5,7# did, but as a valuable improvement also returns
eigenvalue spectrum and associated eigenvectors, de
from the analysis of the Jacobian of the nonlinear sys
~3.2!. On this basis, the stability properties of the CS ha
been thoroughly described. The method is in fact applica
to any type of stationary solution, as forthcoming commu
cations will illustrate. The overall indications—by analys
based on independent approaches—about the existenc
stable CS, their shape and relations with the global struct
arising from the modulational instability, have thus be
strengthened by the study of the eigenvalue spectrum,
ploiting the role of the neutral mode and evidencing b
ranges for CS stability. The CS can be said to be stron
ts
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where their internal eigenmodes are most strongly damp
Moreover, a straightforward extension of the method to
revealed the role of azimuthally asymmetric perturbatio
Indeed the CS dynamics and stability appears governed
mechanisms whose simplification to one spatial dimens
implies some loss of information, and our works proce
toward a full 2D implementation of the method. A furthe
important result of the Newton approach is its capability
predicting the effect of perturbations on the CS dynam
which is ruled by the unstable, neutral, or weakly damp
modes, according to the particular conditions. We deriv
some helpful indications concerning possible applications
CS to optical information processing. The imposition of
gradient in the input field~amplitude or phase!, has been
shown to induce a drifting dynamics ruled by the neut
mode associated to translations. The CS speed acros
device section can be calculateda priori using perturbation
methods, in good agreement with the simulation appro
previously adopted@7#. Also, a relevant indication is the fac
that the short/middle-term dynamics of the unstable CS
governed by a single unstable eigenmode. Our analysis i
cates that the locus of the unstable CS is actually a subs
projection of the basin of attraction—in principle ver
complex—of the two stable coexisting solutions: the hom
geneous solution and the CS. This indication can be tra
lated into ana priori prediction about the address pulse ch
acteristics, e.g., power and duration, when CS must
written and erased.
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