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Cavity solitons in semiconductor microresonators: Existence, stability, and dynamical properties
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We apply a versatile numerical technique to establishing the existence of cavity s¢@®ns a semicon-
ductor microresonator with bulk GaAs or multiple quantum well GaAs/AlGaAs as its active layer. Based on a
Newton method, our approach implies the evaluation of the linearized operator describing deviations from the
exact stationary state. The eigenvalues of this operator determine the dynamical stability of the CS. A typical
eigenspectrum contains a zero eigenvalue with which a “neutral mode” of the CS is associated. Such neutral
modes are characteristic of models with translational symmetry. All other eigenvalues typically have negative
real parts large enough to cause any excitations to die out in a few medium response times. The neutral mode
thus dominates the response to external random or deterministic perturbations, and its excitation induces a
simple translation of the CS, which are thus stable and robust. We show how to relate the speed with which a
CS moves under external perturbations to the projection of the perturbations on to the neutral mode, and give
some examples, including weak gradients on the driving field and interaction with other CS. Finally, we show
that the separatrix between two stable coexisting solutions: the homogeneous solution and the CS is the
interveningunstableCS solution. Our results are important with a view to future applications of CS to optical
information processing.

PACS numbes): 42.65.Tg, 05.45.Yv, 42.70.Nq, 45.70.Qj

[. INTRODUCTION able initial condition a Newton method is used to find solu-

tion(s) to the set of algebraic equations to which the model
Cavity solitons(CS) have been predicted for a wide vari- reduces. There are significant benefits with respect to direct

sence[2] of pattern-forming instabilitie$3]. In particular, ~ SCTiPing the full dynamical model. For example, it can yield
recent works have shown the possibility of creating and con2!. the unstable as well as the stable stationary solutions.
trolling CS in semiconductor microresonat¢bmth multiple With respect to the shooting method, it exhibits a much re-
; duced sensitivity to the choice of initial conditions and to the
quantum well(MQW) and bulK [4-7]. Results achieved Y

. L o steepness of the solution branches; in addition it is less con-
therein pave the way to the application of CS as individuallygiained, and it can yield periodic solutions such as global

addressable self-organized pixels, suitable for, e.g., reconﬁﬁbatterns arising from a modulational instabilityil). More-
urable arrays, shift registers, and other basic applications fQ§yer this method has proved generally much more control-
information encoding and processing,9]. Nevertheless, |aple and less computationally demanding. Finally, an impor-
theoretical analyses and predictions about CS stability, rotant feature of this method is the straightforward derivation
bustness, and controllability are critical for observation andbf the excitation modes of the CS, both the full eigenspec-
in particular for their application. The pioneering works for trum and the relative eigenvector subspace. This is of great
CS in semiconductor microresonators mainly relied theirelevance with respect to the assessment of CS robustness,
analyses on the direct integration of model equations or omutual interaction properties, and dynamical response to sto-
the numerical derivation of the stationary CS profile; thechastic or deterministic perturbations. The sign of the eigen-
former approach yields just the stable solutigimsparticular ~ values’ real parts, of course, accounts for the CS stability,
C9), the latter offers a quantitative criterion to estimate theand a comparison between their relative magnitudes offers an
degree of stability of a stationary solutid¢e.g., CS belong- indication about the best operational parameters to optimize
ing to the same branghAs for robustness and controllabil- CS functionality. The idea is that in order to be considered as
ity, a series of simulations have been performed to appreciatearticlelike, CS must have all the internal modes well
the effect of noise, input field gradients, and of the CS’sdamped; a situation which is shown to occur far from the end
mutual interaction5,7]. The aim of this paper is to exploit a points of the stability branch. In common with many trans-
different and versatile technique, first applied to saturableversely unbounded systems, both MQW and bulk models
absorbing medi&8], which allows us to simultaneously as- exhibit an eigenspectrum always containing a zero eigen-
sess the existence, the stability, and the dynamical propertieslue corresponding to the translational invariance of the
of CS in semiconductor microresonators independently fronoriginal equation$8]. By inspecting the spatial profile of the
the direct integration of dynamical equations. This methodgigenvector associated to the least negative eigenvalue and
not unlike the shooting method introduced[i, yields the by following it when the system is brought close to the
system’s stationary solutions. Here the transverse Laplaciamoundaries of the stable CS branch, one can make predic-
is evaluated by a fast Fourier transfo(fFT). From a suit- tions on the destabilization pro-
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cess which destroys the CS at their existence limits. As for ON ) ) )
other dynamical properties, a fundamental role is shown to =i = YIN+BN —Im(xn)|E[*~d VIN], (2.1b
be played by the “neutral mode,” i.e., the eigenvector asso-

ciated to the zero eigenvalue, as has been found already f@fhere E and E, are the normalized slowly varying ampli-
other different modelge.g., the parametric Ginzburg-Landau tudes of the intracavity field and external driving field, re-
model [10]). Interaction of cavity solitons in a degenerate spectively;d is the cavity detuningy is the linear absorption
optical parametric oscillator has recently been investigatedoefficient due to the material in the regions between the
[11], showing one stable bound state for in-phase CS. ORemiconductor and the mirrorg; is the bistability param-
this basis, the interaction properties of CS pairs and the bester; N is the carrier density scaled to its transparency value;
haviqr of CS in th_e presence of phase and/or intensity gradiy, and 3 are the normalized decay rates of the carrier density
ents in the input field profile have been analyzed. We showhat describe the nonradiative and radiative carrier recombi-
that the neutral mode dominates the response to perturb@ation, respectivelyd is the diffusion coefficient.

tions; in particular we give an expression for the CS speed The transverse Laplacian, which describes diffraction in
for drifts induced by driving-field gradients; the speed is di-the paraxial approximation, is defined as

rectly related to the projection of the perturbation onto the

neutral mode. Finally, such arguments allow us to interpret 2 2 9?1
the unstable branch of CS as a sort of separatrix between the Vf =St o=t
two different basins of attraction of the homogeneous sta- ox= ay= o T
tionary profile and the stable solitonic solution. The evolu-
tion towards either “attractor” is dominated by a single un-

J + L7 2.2

ar F?ﬁz’ (2.2
where (,y) are Cartesian andr(¢) polar coordinates, in

. ) . the transverse plane. Below we will consider for simplicity
stable mode and therefore the velocity of a CS dlsappearlnghat the driving fieldg, is independent of the transverse co-

O:ir]:(gnll:an%ocizna:%r?gp;?gies?nSlg(t)ign Wlét:sﬂﬁsnc?t?ti’irlg q inordinates, i.e., a plane wave. The results we derive will be
P pe, 1o : . . approximately valid for cavity solitons supported by an input
the various instances are always compared to the direct sim

- ) ; i -t SIMeam much broader than the individual CS.
lation of the model's PDE’s, and the agreement is definitely The complex susceptibility,, describes the nature of the

good. F_or the S?‘ke of_5|mpI|C|ty we have flrs_t developeql OUl adiation-matter interaction and can be satisfactorily mod-
model in one dimensiollD), both in Cartesian and cylin-

drical coordinates; a straightforward 2D extension is unfea—elecj [4-6] for both the MQW and the bulk cases. In MQW

. ; . structures we consider an optical nonlinearity governed by
sible pecauge thg evaluation (?f a Jacobian for a SfyStdm of an excitonic resonance and descrilv@a Lorentzian curve.
equations discretized on a grid df XM spatial points in-

volves extreme computational efforts. Nevertheless we havA linear dependence of,, on the carrier densit) is as-
P ) Sumed. The radiation-matter interaction is therefore de-

investigated also this last situation by introducing some Sim'scribed by
plifying assumptions. This paper is organized as follows.

Section Il is devoted to a brief review of the MQW and bulk

semiconductor models. Section Ill contains the description Xni(N,wg)=— W@(N—l) (2.3
of the numerical method adopted to find stationary solutions

and their stability. In Sec. IV we consider the 1D case foryith @ =(A+i)/(1+A2); here A= (we— wo)/ v, is the ex-

two particular range parameters as foundSv] and in Sec.  jtonic detuning, wheres, and y, are the central frequency
V we study the 2D situation explo_ltlng the radial symmetry 5nq the halfwidth of the excitonic line, respectively, angl
of CS. The last part of the paper is devoted to the study ofs the frequency of the input field. Under this assumption and

CS dynamical properties. In Sec. VI an evolution equation isintroducingc=2/[2 Im(®)] Egs.(2.1a and(2.1b) recover
derived to describe the deviation from stationary solutiongpe original form considered if,5).

due to a perturbation; we derive the expression for the CS The case of bulk mediurf,7] is interesting for several

speed and study the drift velocity as well as the interactioneasons, First of all, bulk samples are easier to grow and can
properties of CS for both MQW and bulk model. The nextpe architectured with high accuracy; second, they offer the
subsection contains the explanation we gave to the unstabig,ssipility of high levels of nonlinearity. Nevertheless the

CS branch as a separatrix. Section VIl is devoted to conclug,ggel is more complex and numerical simulations more de-

sions. manding. Adopting the quasiequilibrium approximation the
complex susceptibility for the free carriers takes the form

IIl. THE DYNAMICAL EQUATIONS
fe(N)+fr(N)—1

[
_ The system we are conside_ring consis_ts of an optical cav- Xni(N,wg) = — m EK | l? (@ — o)+ 7
ity containing a nonlinear medium and driven by an external (2.4)
coherent field; the nonlinear medium is either a MQW or a '
bulk sample of GaAs. In the slowly varying envelope ap-
proximation and in the mean-field limit the dynamical equa-
tions governing the electric field inside the cavity and the
carrier density of the active material take the fdrng|

wherek is the carrier momentumy is the dipole matrix
element between the valence and the conduction lfeale
culated in[13,14)), v, is the polarization decay rat@bout
10" 1), andf w, = €gapt 7 °k?/2mg is the transition energy
at the carrier momentuiky mg being the electron-heavy hole
reduced masgl5]. V4 is the active volume. Thégy ,(N)

JE
D . . . 2
(1+n+i O)E+E,+i Zx,E+i VIE, (2.13 are Fermi-Dirac distributions for electrons and holes, respec-

ot
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tively. Two elements are then introduced phenomenologiit can usually be tracked efficiently in parameter space by
cally to properly describe the behavior of the bulk medium inusing it as input to the system with slightly modified param-
the regimes of interest; one is band-gap renormalization aneters.
the other is the Urbach tail. Similarly to the MQW case, we The benefit of such a procedure over the more direct
define the band-gap detuning parameler (wgy,p— wo)/y,  simulation of the full time-dependent PDE’s is that it can, in
wherewg,, is the band-edge transition frequency anglis  principle, yield all the stationary solutions, not just those
the frequency of the input field. For more details about thewhich are dynamically stable. Furthermore, once a stationary
bulk model we refer td6]; at this stage it is worth noting solution has been found, its stability can be determined and
that, with respect to the MQW model, the dependencéon studied by inspecting the eigenvalues and eigenvectors of the
of the bulk susceptibility is highly implicit. Jacobian matrix obtained by linearizing the system around it.
Note that the Jacobian matrix at the stationary solution is
needed by the Newton method, and so can be returned as one
IIl. STATIONARY SOLUTIONS AND STABILITY of its outputs. If any of the eigenvalues of the Jacobian have
The model consists of three coupled nonlinear time-2 Positive real part then the solution is unstable. The associ-
dependent PDE’s, namely E.14, its complex conjugate, ated eigenvector gives the spatial profile of the correspond-
and Eq.(2.1b. We opt for ReE, INE, andN as our inde- N9 eigenmode, Wheth_er stable, l_mstable, or_neutral_._The ei-
pendent variables. In general they are functions of both tim@€nvector corresponding to an eigenvalue with positive real
and spacetfx,y) but at this stage, we are primarily inter- part will dete_rmme _the spatial distortion of the unstaple So-
ested in stationary solutiong;E=0=¢;N. Analytical treat- !utlon as the instability develops. Note that the Jacobian gnd
ment is possible only for the special case of homogeneouS €igensystem emerge from any Newton method, not just
stationary solutions, which means to neglect the Laplacian i@"€ using the FFT12]. _ _ _
Egs.(2.1), but not for more general cases, e.g., cavity soliton, FirSt, for simplicity we consider a on_e-dlmenszlonal model
solutions. The problem must thus be treated numerically. 14" Which the transverse Laplacian is simpf = d; and the
what follows we apply a numerical technique, preVious|yd|scret|zat|on process takes place on a line; we refer to Sec.
applied[8] for a simpler model, to a semiconductor micro- V for the two—dlmens_lonal case. On a linear grldl\tbfpo_mts
resonator. For simplicity we describe the technique only inve have the following system of 8 coupled nonlinear
relation to the electric fielé although similar considerations €guations:
apply to the carrier densiti{. _
Consider a square grith Xx M (M =2" with n integer is —nEN+ 9ED +E(N - S[Re( ) VEL +Im(x) VE"]
best, for efficient use of the fast Fourier transform algo- 2
o e ; : —(9°E;) V=0, (3.29
rithm); on this grid we discretize the transverse plargy] X
and consider for each grid point,{), with i,j=1... M, _
the discretized field values; ;= E(x;,y;)=E(i,j). Our first ~ —n(E)"—6(E)V+Z[Re(x)(E) D —Im(x)O(E)"]
goal is the evaluation of the transverse Laplacian at each grid 2 ()
point, i.e., (VfE)i,j. On the assumption of periodic bound- ﬂaxEr)( '=0, (3.2
ary conditions, valid for the models under study for a large 0 2 O =21 () 2.() 20 (1)
enough domain, we numerically evaluate the spatial deriva-~ YLN"+ BN =Im() W [(ED™ + (BN ] = d(9N)™]
tives using a fast Fourier transfortRFT) algorithm to com- -0 (3.20
pute them in Fourier space, whe¥é — —k?. Thus the spa- '

tial second derivatives are numerically evaluated as followsyhere the electric field has been split into its re&, and

imaginaryE; part; ;=(1+ n) andl=1,... M refer to the
F_ Ea Ith grid point; the 31 unknown variables arg{’, E{" | and
E(x,y)—E(i,))—E(k k)—— (K +k)E — (VIE);;, NG

(3.2

IV. 1D MODEL

where F denotes Fourier transformation add * denotes
back transformation. Starting from the set of values where A-MQW
the variable takes over the whole grid we end with an array In the following we will analyze the resonank &0) case
that corresponds for eadhj to the transverse Laplacian of for the MQW model; other parameters ate=30, = —3,
the variable at that grid point. After evaluation of all the d=0.2, »=0.25, 8=1.6, and y=0.002. From previous
spatial derivatives, we have aachgrid point three nonlin-  works [5] we already know the expected scenario in two
ear algebraic equations for three variables, all coupled todimensions; in 1D we expect to find again, in almost the
gethervia the transverse Laplacian. same range of values, soliton and roll solutions. The homo-

The problem has now been reformulated so that a Newtogeneous steady-state curve is shown in Fig. 1 where solid
method can be used to find solutighof the nonlinear sys- and dotted line of the S-shaped curve refers to stable and
tem. In general, there will be multiple solutions for any givenunstable homogeneous solution, respectiv€lfne stability
set of parameters, and which one is found by the Newtorf the homogeneous solution can be assessed directly by
method depends on the initial conditions supplied. In particustandard techniques, but a Newton method could also be ap-
lar, CS solutions are found from initial isolated peaks ofplied to it) Starting with an initial condition corresponding
suitable width and amplitude. Once a CS solution is located{o a soliton solution as obtained from a direct integration of
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25[" o 'D' nam' ' |s 'I 't_' " 'fcs T ST bation eigenvalues of the CS, to be precise the six most
b 08 branch o “dangerous” i.e., the least-negative eigenvalues. The
..... Unstable CS branch ] negative-slope branch is characterized throughout its exis-
20— Suablerals ] tence range by the presence of a single eigenvalue with posi-
I ] tive real part. Note that both branches always exhibit a zero
. ] eigenvalue, i.e., aeutral mode This is due to the transla-
= 150 ; ] tional symmetry of the problem. This property is of great
g’ / 1 importance for applications, as will be discussed below. This
é . neutral mode has an eigenvector which is proportional to the
10r Voo ] gradient of the CS state itself, because the gradient operator
\ ] is the generator of translations. In Fig. 3 we have displayed
I {\\ ] the field E and the carrier densitiN for a typical soliton
5.__ st "‘:~~ff_f\ ] solution, their derivatives and the neutral modg corre-
L able homog. solutloq \ 1 . .
[ Unstable homog. solution ™ 1 ] sponding toE and N. The close agreement with the exact
I analytical prediction confirms that discretizing on a finite
20 25 30 35 40 45 50 55 grid with periodic boundary conditions gives a good approxi-
IE;q| mation to the true problem. As shown in Figag for both

decreasing and increasing values of the input field the cavity

FIG. 1. 1D MQW model. Steady-state curve of the homoge'soliton loses stability when a second eigenvalue approaches
neous solution and results of numerical evaluations and of simula= y 9 Pp

tions for cavity soliton and roll stationary solutions. Parameters aré€ro.

A=0, C=30, 6=-3, d=0.2, »=0.25, B=1.6, and y=0.002. The lower limit corresponds to the turning point at which
T.P. indicates the turning point of the homogeneous steady-staiée upper and lower CS branches merge. It is easy to show
curve. that this mergeKa saddle-node bifurcationnecessarily has

an eigenvalue approach zero for each branch. In Fig. 4 we

EqS(Zl) we were able to find a whole branch of stable CSp'ot the three Components of the eigenve(ﬁ@w\lhich will

and moreover also an unstable branch. The stable solitofestapilize the stable cavity soliton at the left end of the
branch is represented in Fig. 1 by a thicker solid line and thgyranch: poth components related to the electric field are
upstable branch by a thicker dashed line; as can bg seen.fro,qibmy localized on the cavity soliton and resemble it in
F'.g' 1 the agreement.between the dynam|cal S'mU|at.'°n§hape, while the component corresponding to the the carrier
(diamonds and the stationary solutions obtained by solvmgdensity has a dip at the soliton peak position and two
directly the system of nonlinear equatiof&2) is excellent. maxima on the sides. Subtracting this mode from the CS will

Thus we have two completely different ways to obtain nu- : . .
merically the CS solutions of our physical system and thisclearly cause it to shrink, and thus this unstable mode can be

reinforces claims that they are not artefacts nor dependent o(ﬁ)nad_ered asa S\.N'tCh'Oﬁ mogkhe same way when we use
the particular numerical method. Moreover, the unstablé® localized Gaussian beamout of phase with respect to the
branch, which is found only by our stationary solution ap-Packground to switch off a Q$5]. When the input intensity -
proach, gives new insight into the mechanisms that underlié Only slightly increased, it can be seen from Fig. 2 that this
pattern and soliton formation; it is clear from inspection of Mode becomes even more highly damped than the other
Fig. 1 that the unstable CS branch bifurcates exactly at thérodes shown. Over the central region of their existence, the
modulational instabilit(MI) point where the homogeneous CS are thus rather stable. It is worth noting that the magni-
solution becomes unstable against pattern formatigor tude of the largest eigenvalues is comparable to thatafd
these particular parameters case Ml occurs just at the turnirifjiis means that any perturbation dies out in a few response
point of the homogeneous steady-state curve times of the mediungwhich is many cavity response times in

The stability of CS, as previously mentioned, is readilyour model$. Thus all the internal degrees of freedom of
derived from the solution method used here. We plot as #éhese CS are strongly damped, leaving only their transla-
function of the input intensity in Fig. 2 some of the pertur- tional freedom, giving them a particlelike character.

2 TrTTTTTTITTIITTT T 15
'] E
" TP. “ 101
'3 Ot 'g FIG. 2. 1D MQW model. Parameters are as
i _qk :\ st Fig. 1. The six eigenvalues with largest real parts
= = as a function of the input fielda) Positive-slope
2 _ot & (stable CS branchib) Negative-slopgunstable
of CS branch. T.P. corresponds to the turning point
—3F of the homogeneous steady-state curve.
_4. 1 P PSS SR RS SR R R _5‘..I..‘I.‘.I‘..I...I...I..
32 34 36 38 40 42 44 46 32 34 36 38 40 42 44 46

[y [Es|
(a) (b)
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10 14 ' ' " 1.0
12}
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6 101
3 3 st 1 061
a4 & =z
2 e 04}
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o ol 0.2}
-2 L L L 0 L L L 0.0 L L L
0 32 64 96 128 0 32 64 96 128 0 32 64 96 128
Grid—point index number Grid—point index number Grid—point index number
4 4 0.4
FIG. 3. 1D MQW model. Pa-
- 2 -~ 2 ; 0.2} . rameters are as Fig. 11E|!=38.0.
3 3 - Top: the real and imaginary part
g, i;l o g o0 of the electric field and the carrier
56 % 3 density relative to a stable CS;
3 . B
5 s _, _o2t ] Center: the corresponding neutral
modes are plotted; Bottom: the
—4 . . . -4 . . . -0.4 . . . calculated derivative of the CS
0 32 64 96 128 0O 32 64 96 128 0 32 64 96 128 components.
Grid—point index number Grid—point index number Grid—point index number
2 ; ' ; 2 ; ; ' 0.2
3 1 1 3 1 1 0.1}
g g =
g o Eo - 0.0
x x
o ©
-1} 1 -1} 1 -0}
-2 L L L -2 L L L -0.2 L L L
0 32 64 96 128 0 32 64 96 128 0 32 84 96 128
Grid—point index number Grid—point index number Grid—point index number

Turning now to the right side of the stable soliton branch,on which it is possible to “write” cavity soliton§4,5]; but a

the eigenvectoﬁl that first destabilizes the CS has a com-blackboard is an essential prerequisite for such writing. We
pletely different shape from the soliton. This is shown in Fig.can examine what happens to a soliton when we increase the
5, where we have plotted the three components, as usual, ¥glue of the input field just slightly above the value corre-
this eigenvector and for an immediate comparison we havéponding to the turning point. Figure 6 is composed of six
superimposed on the same plot the soliton itself. The destdtames that show the evolution of the soliton towards a roll
bilizing mode is clearly associated with the homogeneoudattern. Starting from the unperturbed soliton, the homoge-
background, rather than being localizsed on the CS. This igeous solution at the boundary of the grid begins to switch to
to be expected, since at this end of the brattigh injected  the upper branch; eventually the soliton can no longer be
fields |E,|) we approach the turning point of the homoge- supported and finally a stable roll pattern emerges. Neverthe-
neous steady-state curve and so the CS destabilization can I§§s a strong link to the single CS is evidenced by the fact
related to that of the background. This emphasizes that that the minimum and the maximum values of the amplitude
stable background isreecessarygondition for a stable cavity of this pattern are very close to those of the single CS, so that
soliton. This picture also reinforces the role of the lower-the CS can here be regarded as a minimal, self-confined,
branch homogeneous steady-state solution as a blackboaetement of a global pattern. This is also evidenced in Fig. 1

0.25 T T i 0.25 ; " ¥ 0.012
o201 o201 1 o.010¢ 1 FIG. 4. 1D MQW model. Pa-

- - . .

ﬁé 0.15 3 oasp 1 0.008} 1 rameters are as Fig. 1. Eigenvec-

1 = .

SIS % 010 S tor correspondlng to the largest

& & 5 nonzero eigenvalue of the stable

g 0057 g 005 1 0.0041 ] CS at|E,|=33.476.(a) and(b) re-
0.00 0.00 0.002f ] fer, respectively, to the real and
—0.05 ) ) ) —0.05 . . . 0.000 , _ . imaginary part of Fhe elect_rlc field

0 32 64 96 128 0 32 64 96 128 0 32 e+ 96 128 and(c) to the carrier density.

Grid—point index number Grid—point index number Grid—point index number
(a) (®) (e)
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0.25-.||....|..runnn||||||||||||rrrr- 30u||uvv||u-uu||||vvuuu||||u-vu|ur|u||n|vvuuu|
[ o  Dynamical Simulations of CS |
Stable CS branch
S N (R Unstable CS branch E
0.20 I 25+ —— Stable rolls B
[ == Unstable rolls ]
0.15 o0k i
- uF W ’ i
0.10 = = i !
3 X S 15+
P = [ N,
0.05] [ ~
E~ 10_ ’\..
0.00} [
[ 5__////
0 32 64 96 128 36 37 38 39 40 41 42
Grid—point index number [Epl

FIG. 5. 1D MQW model. Parameters are as Fig. 1. Eigenvector FIG. 7. 1D bulk model. Steady-state curve of the homogeneous
corresponding to the largest nonzero eigenvalue of the stable CS g@lution and results of numerical evaluations and of simulations for
|E,|=43.72. Continuous and dotted lines refer, respectively, to theavity soliton and roll stationary solutions. Parameters frel,
real and imaginary part of the electric field, and dash-dotted line t& =80, 6=—9, d=0.2, »=0, 8=0, andy=0.0014.
the carrier density. The thicker line is the cavity soliton. The left
ordinate refers to the perturbation mode, the right to the CS. steady-state solution is no longer entirely stable but a small

portion is affected by a modulational instabilityll) close to

where stable and unstable rolls branches are also shown. THE turning poin{see Fig. 7. More importantly, the shape of

2D counterpart of these multiple localized structures ars{) e cavity _sollton IS different; for the bulk mOd.el beI(_)w the
hexagons, as shown [5]. andgap its profile shows damped oscillating tails, not

present for the MQW case, and the branch of existence is
much more restricted. So the analysis of CS as stationary
solutions can give us some insights and possibly link the
We analyze now the one-dimensional bulk model and indifferent shape of solitons to different behaviors.
particular we consider the following set of parameteks, First, as usual, we compare the results obtained by dy-
=1,3=80, =—9,d=0.2, =0, andy=0.0014, which  namical simulations to those obtained via direct resolution of
have proved to be rather close to experimental conditionthe stationary system, and as can be seen from Fig. 7 the
[6,7]. The overall picture here is rather different with respectagreement is excellent. Following the negative-slope CS
to the MQW case; the lower branch of the homogeneoudranch we find again that the mechanism underlying their

B. Bulk

25 T T T 25 T T T 25 T T T
20F 20F 20F
__ 15} __ 15} __ 15}
3 3 3
w w w
10} 10} 10
5r 5 sk
0 . . . 0 . . . 0 . . .
0 32 64 96 128 0 32 64 96 128 0 32 64 96 128 FIG. 6. 1D MQW model. Pa-
Grid-point index number Grid-point index number Grid-point index number rameters are as Fig. 1. Six frames

corresponding to the evolution
25 ' ' ' 25 ' ' ' 25 ' ' ' (from top-left to bottom-right of
a soliton for|E,|=43.8.

20}
= _¢-15- =
w” w” w”
10}
5-
0 AN A 0 A=A
0 32 64 96 128 0 32 64 96 128 0 32 64 9 128

Grid-point index number Grid-point index number Grid-point index number
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0‘4 T T T 1 '5 T T T T T
0.2} ] 1.0f ]
iooo0of 19
- - 0.5¢ 1 FIG. 8. 1D bulk model. Parameters are as Fig.
=~ -0.2¢ 1 = 7. The six eigenvalues with largest real parts as a
5 % 00r ] function of the input field.(a) Positive-slope
@ —0.4r 1 x (stablg CS branchib) Negaitve slopgunstable
_osl 1 05}t - CS branch.
_0.8 1 1 - 1 ,O 1 1 1 1 1
3.0 365 37.0 375 380 36 37 38 39 40 41 42
[ [

(&) (b)

existence is linked to MI. In fact the unstable branch con-we have displayed for a typical stable CS the field and the
nects exactly to the point where the stationary solution becarrier density, their derivatives and the neutral mage
comes modulationally unstabl¢his is a stronger confirma- Let us now examine the mechanisms by which the soliton
tion than in the MQW case because there the turning poinfoses its stability. On the left side of the stable CS branch the
coincides with the onset of MIWe plot as a function of the picture is as for the MQW maodel; the first dangerous eigen-
input intensity in Fig. 8 some of the perturbation eigenvaluessector u,, the one corresponding to the largest nonzero ei-
of the CS. The negative-slope branch is again characterizegenvalue, has the same field shape of the soliton and the
by the presence of an eigenvalue with a positive real paricomponent related to the carrier density presents a dip at the
and thus unstable. There always is a zero eigenvalue, agagoliton peak positiorisee Fig. 10 As for the MQW model,
related to translational invariance; on both sides of stabl@ver the central region of the stable CS branch the magnitude
branch a second eigenvalue approaches zero and destabilizg#sthe largest eigenvalues is comparable to the value s6

the stationary solution. As done in the MQW case, in Fig. Sthat the CS are rather stable and almost particlelike.

15 15 1.0
0.8}
0.6
=z
0.4
0.2
0 . . L -5 L L N 0.0 N . L
0 32 64 96 128 0 32 64 96 128 0 32 64 96 128
Grid—point index number Grid—point index number Grid—point index number
4 4 " 0.4
FIG. 9. 1D bulk model. Pa-
- - 0.2} : rameters are as Fig. ]7E|!=37.0.
E ;3 -~ Top: the real and imaginary part
5 ¥ 5_0 0.0 of the electric field and the carrier
56 S 3 density relative to a stable CS;
3 3 _o2} | Center: the corresponding neutral
modes are plotted; Bottom: the
4 ) ) ) —4 ) ) ) —0.4 ) ) ) calculated derivative of the CS
0 32 684 96 128 0 32 84 96 128 0 32 84 96 128 components.
Grid—point index number Grid—point index number Grid—point index number
4 4 0.4
0.2
Z
. 00
o
-0.2
—4 . . s —4 s . . -0.4 . - s
0 32 64 96 128 0 32 64 96 128 0 32 64 96 128

Grid—point index number Grid—point index number Grid—point index number
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0.3 T T T 0.3 T T T 0.030
0.020¢ 1 FIG. 10. 1D bulk model. Pa-
rameters are as Fig. 7. Eigenvec-
P ] tor corresponding to the largest
F 5000 nonzero eigenvalue of the stable
CS at|E,|=36.488.(a) and(b) re-
-0.010F E fers, respectively, to the real and
imaginary part of the electric field
-0.2 . . . -0.2 . . . -0.020 . , . . .
0o 32 64 96 128 0 32 64 96 128 0 32 64 96 128 and(c) to the carrier density.
Grid—point index number Grid—point index number Grid—point index number
(a) (b) ()

A different situation holds for the right side of the branch, pends solely om and not on the anglés. Under this assump-

for high input intensity; the first dangerous eigenmade tion we are again faced with a one-dimensional problem
reported in Fig. 11 is completely different in shape with re-where we discretize in, and the Jacobian has the same size
spect to MQW model and in this case the destabilizatiords in the previous 1D work. Note that the mixed ternr)1/
mechanism is clearly localized on the soliton itself. Indeed*(d/dr) can be evaluated by simply dividing the first de-
from Fig. 7 we see that when the upper CS branch terminateiédvative, as determined from Fourier space,rby
there is still a substantial portion of the homogeneous solu- The analysis of the MQW model does not present any-
tion branch available as a stable background. The shape #ting new; we have again obtained both stable and unstable
this eigenvector suggests instead that the soliton solution b&ranches of solitons and the main difference is that for 2D
comes unstable because its subpeaks tend to grow and thif¢ soliton’s peak intensity is bigger than for 1D. Once more
the soliton evolves towards a roll pattern. Indeed this seem#e agreement with the dynamical simulations is excellent.
to be the case if we look at Fig. 12; here we have reported si$ur 1D findings regarding eigenvalues and eigenvectors
frames corresponding to the evolution of an unstable solitogimilarly extend directly to the 2D case.
for |E;|=38.0. The side peaks of the soliton grow more and For the bulk case some surprises arise, as can be seen
more until a roll solution is reached. Differently from MQW from Fig. 13. The soliton branches show a spiraling behavior
this pattern cannot easily be considered as a multisolitoMhich suggests possible bistability between solitons of dif-
solution because the minimum value of the field is quiteferent intensity. We show in the left graph of Fig. 13 the
different from the soliton one, and the whole structure isresults obtained with the usual stability analysis. According
more regular and quasisinusoidal. This is also evidenced it this, the lower positive-slope branch of the spiral should
Fig. 7 where stable and unstable rolls branches are aldee stable, but the dynamical simulations show instability.
shown. The temporal evolution shown in Fig. 12 suggest$urther, for input fields greater than 38.5 the peak intensity
that a “3CS” state[8] destabilizes the CS, but it is itself Of the soliton decreases until the branch turns back at ap-
unstable so that essentially a switching-wave forms, converroximately |E,;|=39.5. This portion of soliton branch
ing the homogeneous background into a coexisting roll patshould be also stable but the dynamical program shows in-
tern. stability for input fields greater than 38.5. This discrepancy
with respect to the full 2D dynamical simulation can be eas-
V. TWO DIMENSIONAL EXTENSION ily explained, and agreement restored by an extension of the
stability analysis. The Jacobian found in the search for cy-
The work up to this point is based on a one-dimensionalindrically symmetric solutions governs radial stability only,
version of the evolution Eqg2.19 and (2.1 which basi- j.e., with respect to perturbations which are themselves cy-
cally means that we consider only one transverse coordinat@ndrically symmetric. We must also, however, consider azi-
In a two-dimensional extensiai2D) a second transverse co- muthally varying perturbations. So let us consider the fol-
ordinate has to be considered. With respect to 1D nothing, ifowing form for the perturbation:
principle, changes, we could now simply discretize on a
square grid. In practice, this involves a complex Jacobian s:R(r)r|m‘e‘m¢, (5.0
matrix which is too big to handle. Nevertheless, if we restrict
ourselves to radially symmetric solutions, the problem can bevhere we allow for an azimuthal dependenda m After
simplified; since in polar coordinates, ) the solution de- some calculations we obtain

0.030

0.020F FIG. 11. 1D bulk model. Pa-

rameters are as Fig. 7. Eigenvec-
tor corresponding to the largest
nonzero eigenvalue of the stable
CS at|E,|=37.87.(a) and(b) re-
-o0t0f E fers, respectively, to the real and
o020 imaginary part of the electric field

0 32 ea e 128 0 32 64 86 128 0 2 ee  ee 128 and(c) to the carrier density.

Grid-point index number Grid=peint index number Grid—point index number
(a) (b) ()

0.010F

u, (N)

0.000
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0 32 64 96 128 0 32 64 96 128 0 32 64 96 128 FIG. 12. 1D bulk model. Pa-
Grid-point index number Grid-point index number Grid-point index number rameters are as Fig. 7. Six frames

corresponding to the evolution
(from top-left to bottom-right of
a soliton for|E,|=38.0.

0 32 64 96 128 0 32 64 96 128 0 32 64 96 128

Grid-point index number Grid-point index number Grid-point index number
d2?R (2lm|+1) dR _ looks almost the same for eaaln This shows that these are
faz P B —— rimeimé (5.2 indeed background modes, insensitive to the phase profile at
dr r r the soliton core.

When we perform the stability analysis all the tentf8e'™” V1. RESPONSE TO PERTURBATIONS

cancel out and the contribution of the transverse Laplacian in

Eqg. (5.2 to the Jacobian is due only to the term in round Next we analyze the effect of perturbations on the stable
brackets. The term (| + 1) accounts for azimuthal pertur- CS solutions described so far. In view of possible applica-
bation; form=0 we recover the usual radial case but fortions to optical processing schemes this response merits in-
higher values we introduce azimuthal effects which contrib-vestigation. As we shall see the eigenvalues and eigenvectors
ute to the the eigenvalues of the Jacobian. We show in Figef the CS Jacobian again play an important role.

14 what happens to the eigenvalues for different values. of Let us write the system equations in the concise vectorial
Starting from the left we haven=0 that correspond to form

purely radial perturbations, with only negative eigenvalues.

Next we have the casen==*1 where there is a neutral JE . . .
mode; it is easy to show this is again associated with the —=H(E)+E, (6.1
translational symmetry. Finally, we have the case *2

and we see that for this value the upper CS branch loses its

stability exactly at 38.5 according to the dynamical simula- whereE is the vector ofall unknown variablesf is a generic
tions. In Fig. 15 we report six frames of a dynamical simu-honlinear function, and, is the vector which describes the
lation which show the destabilization of a cavity soliton for driving field(s). We have to consider two different types of
an input value of the field slightly above 38.5. It clearly perturbation and treat them in a slightly different way.
exhibits instabilityvia an asymmetric deformation sh=2 ~ Namely external perturbations of the driving fieldthey
type. The eventual roll structure is influenced by the periodiccould be due to noise as well as imposed amplitude or phase
boundary conditions, but the onset of the instability shouldPerturbation of the input fieldis and internal perturbations

be accurately portrayed. Finally, note that the band of negawhich are related directly to the dependent v:alriables and en-
tive eigenvalues with values in the rangel.0<A<—0.5 ter into the evaluation of the nonlinear functibnThese last

1.5 " 1.0 " 1.0
1.0¢ ] 05 ] ost ] FIG. 13. 2D bulk model. Pa-
L, 05} i i rameters are as Fig. 7. Stability as-
¥ : ‘: sighations on the left refer to
—~ 00} 1 L 00} = | 00 ' .
= = = purely radial perturbations, those
® -05F 1 & & on the right include azimuthal per-
1ol ] -035 1 —0.5¢ turbations also. The dynamical
/ simulations agree only with the
-1.5 -1.0 -1.0 latter
35 36 37 38 39 40 35 36 37 38 39 40 35 36 37 38 39 40 atter.

IE;, | IE;,| IE;,,|
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I FIG. 14. 2D bulk model. Parameters are as

. 5f '\ v R - 15r ‘\ (,' 20 Fig. 7. Perturbation eigenvalues as a function of
uf \ uf \ the input field for the upper CS branch of Fig. 13.
AN AN The perturbations are of the for(B.1) with azi-
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il (Bl

correspond to fluctuations in the values of parameters such agvertheless we assume again tBatEg+¢. With this as-
0 as well as to perturbations due to interactions betweegumlotion the evolution equation farbecomes
cavity solitons.

External perturbation.Let Eg be a stationary solution e . . df . . .
= 9Eg/dt=0=f(Eg) +E, and consider a small perturbation Fa f(E9+ dE/ - (e+Pin) +E1=Js (6 +Piny).
on the external driving field Es
(6.9
—f(E)+E, + F_;ext- (6.2) Thus i_n both cases it is possil_ale_ to write the same form of
evolution equation for the deviation from the stationary so-
lution:
Due to the perturbation the solution suffers a slight deviation
from the stationary value and can be writtenEas Eg+ ¢; ge .
inserting this into Eq(6.2) we obtain E‘JS’S”LP' (6.6
de . - daf} . . . - At this point we assume that can be expressed in terms of
—=f(Eg)+| —= +E|+Poyi=Js &+ Peoyts e ) .
ot s dE/ . & T e IsTE T et the basisu;} formed by the eigenvectors of the Jacobian,

Es
6.3 . . i ]
e=2> aju;) where Jgu)=x;lu;)
wherels is the Jacobian of the stationary soluti@xactly as ]
used in the Newton solution method
Internal perturbation.In this case the perturbation is re-
lated to the intracavity field itself and so we need to consider

" daJ
its effect on the evaluation of the nonlinear functifin 2 —Huj)= 352 aj|u;) +P. (6.7)

and Eq.(6.6) becomes

To further analyze Eq6.7) we recall and apply the concept
of biorthogonality. Let]é be the transposed matrix 3§ and

(6.9

FIG. 15. 2D bulk model. Parameters are as
Fig. 7. Dynamical evolution of a soliton solution
for input field |E,|=38.6; starting from the top
left it is possible to see how the soliton destabi-
lizes via an azimuthal instability.
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let <JJ|‘]g:<JJ|§]! it can bﬁe EhOWn thal\J=§J and that, T 12: ° | Plhqsle glrudlienlt (L;yn;milcollsir;ul.l) L I//:
when properly normalizedp;|u;)= &;; . These relations ex- © * ﬁ:ops'i:ud;g:iient (dynamical simul.) AN
presses the biorthogonality properties of eigenvectors of op- * 10 [ e Amp.imie gradient h
erators which are not self-adjoint. We can project both sides & L Yy
of Eq. (6.7) on (v;| and exploit the biorthogonality relation é sl ]
obtaining: = .
S 'y
S dai S 5 > } 6 /,«’ 1
<Ui|ui>E:<Ui|ui>)\iai+<vi|7)>: (6.9 = °f Py
k5 I */
da, 1 B 69 2 4 VW ]
— =A\ijqj+ —=—=—(U; . . 5 I y
dt 0 (oifu =
S 2F .
For generality, we have not normalized the vector basis. Q S
It is reasonable to assume thei a;(t=0)=0 which » [
physically means that when the perturbation is turned on, the L0 R N N
corresponding deviation from the stationary solution begins 0.0 00z 004 006 008 0.10
to grow from zero. With this initial condition we obtain the k
following expressions for the perturbation coefficieats FIG. 16. 1D MQW model. Parameters are as Fig. 1. CS drift

velocity vs gradient coefficierkt. Solid and dash-dotted lines refer

1 <5||75> t . to phase gradient and amplitude gradient, respectively. Diamonds
ai(t)= 7\_| <z;|l]> (e=1) if N#0, (6.10 and stars refer to evaluation of CS drift velocity in a corresponding
n dynamical simulation. For a typical microresonator 1 unit length/
-z unit time ~35x 10* um/us.
(v P)
ag(t)=—=—=—t for A=0. (6.11 o o
(volto) dé_day _ (lP) _ (volP)
. . . U:d_:d_a:a > s . > ' (615)
Evidently for long times (—) the behavior of eacly t t (volug) [ - |dEg
strongly depends upon the corresponding eigenvalpe Yol gx

Providedl?s is a stable stationary solution, all the eigenvec-

tors except|Uo) have eigenvalues with negative real part. SO We have shown that only the projection of the perturba-
This means that, as—, a, dominates over all othes,.  tion on the neutral mode is relevant for the dynamics of CS;
Thus the effect of any perturbation on a stationary stablénoreover the neutral mode is an odd functiorxaind so, as
state is essentially determined by its overlap with the neutra® further restriction, only the odd component of any pertur-
mode of the transposed matrix of the Jacobian. Thus we ned¥tion is important.

only consider the rather simple equation Among the various types of perturbations, we ana!yze
three of particular relevance. Two are external perturbations,
da, 1 o a phase gradient and an amplitude gradient in the driving
W:T<00|P>. (6.12  field. The other is internal, perturbation of a soliton with
(volUo) respect to another soliton.

Now, the physical meaning afa,/dt is the velocity of the In the case of a (%Pase Qrad'ef?t imposed on the ho_moge—
CS under the influence of the perturbation. To see this, notnoe;(r)nu_S backgroundt, ™ the input field takes the following

that after a transient the perturbation of the stationary stable
solution is simplye =ag|ug) so thatE=Eg+ a0|uo>_; recall E,(x) = EMe*=EM(1+ikx), 6.16
now from Sec. IV that the neutral mode is proportional to the
gradient of the solution itself, i.e(in 1D for simplicity): where the last relation holds fdex sufficiently small; then
dEs dEs the perturbation iP= E,(h)ikx. Similarly an amplitude gra-
|ug)= agy —~E=Estaoa—-. (6.13  dient yieldsP=E{"kx. Inserting these perturbations into Eq.
(6.15 we can calculate the drift velocity of a CS in the
Consider now a soliton slightly displaced from its initial po- Presence of a weak phase or amplitude gradient on the input

and the bulk model, respectively; in both cases the agree-
R _ dES(XO) ment with a direct evaluation of the drift velocitja dy-
Es(Xo+ §)=Es(xo)+§T. (6.14 namical simulations is extremely good. Now consider the

perturbation of a soliton with respect to another soliton. Let

From a direct comparison of Eqé5.13 and (6.14 we see  Ei represent the first soliton, located>at andE, the sec-
thaté=aoa and this implies that the velocity of the soliton ~ 0nd, atxz, where|x;—xy| is large enough compared to the
is soliton width, so that the effect d&, at the locatiorx; can
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dynamical simulations all the bound states marked with stars.
For each of these, a change of separation results in a relative
velocity of opposite sign, so the stability of these bound
states is also correctly predicted. The two zeroes marked
with diamonds do not correspond to stable bound states: here
the two solitons are themselves unstable and evolve towards
a roll solution.

Separatrix

An important result concerning the role of the unstable
CS branch acting as a separatrix can be obtained exploiting
the considerations developed so far. We recall that the dy-
namics of the unstable CS, both in MQW and in bulk model,
is governed by a single eigenmode, with an eigenvector
whose shape is not dissimilar from the unstable soliton. Be-
ing essentially a single-mode behavior we can anticipate that

Ol ! ! L the locus of the unstable CS will act as a separatrix of the
0.00 0.02 0.04 006 008 0.10 two stable coexisting solutions: the homogeneous solution
k and the CS. Dynamical simulations confirm this role for both

FIG. 17. 1D bulk model. Parameters are as Fig. 7. Otherwise as

Fig. 16.

MQW and bulk, in both 1D and in 2D; to check this we have
initialized with an unstable soliton. If we just slightly in-

crease the input field then the field evolves towards a stable
. .= ) ) soliton, while if we slightly decrease the input field it decays
be considered a small perturbatlenEEQ. I%emg an internal 1, the homogeneous background.

perturbation, in this case we haf=J;-E,; inserting this This behavior follows from the perturbation response of
into Eqg.(6.19 we can calculate the velocity of the first soli- the unstable soliton, since, according to E11), the mode

ton induced by the second one. By symmetry, the relativeimplitude that prevails is the one related to the eigenvector
velocity is twice this. Note that the interaction “force” gov- with positive eigenvalue, thus

erns the relative velocity, not the relative acceleration. Any
separation distance at which the mutual perturbation van- <J+|73>

ishes is thus a “bound state” of the two C@aybe an ——t (6.17)
unstable ong In Figs. 18 and 19 we report the results ob- (o]us)
tained in the MQW and in the bulk model, respectively. BYypare 1 refers to the single unstable mode. The perturbed
convention the relative velocity is negative for two solitons solution can be written as follows:

moving apart, positive for the opposite case.

a.(t)~

For the MQW case no equilibrium distance is predicted;

two solitons should either attract each other or should have

negligible interaction. But in fact dynamical simulations
have shown that there is actually one equilibrium position,

(v:|P)

E:ESJF §~|§S+a+|6+>=|§5+ Tt|6+>

(vilus)

(6.18

while two CS are effectively independent when their recip- R

rocal distance is greater than 50 grid points. So the perturbathe shape ofu ) is very similar to that of the soliton itself,
tion method predicts quite well the noninteraction distance2nd so it will act as a switch-off or a switch-on agent accord-
but fails to predict the bound state. In the bulk model theing to the sign of the coefficient. Considerifigjas a slight
situation is more complicated; as can be seen from Fig. 18eviation from the input field, our checks show that an in-
there are several interequilibrium distances, indicated witltrease in the input field correspond to a positive sign, while
stars and diamonds. But, contrary to the MQW case, here the decrease to a negative sign, thus confirming the role of the

method is very predictive and we were able to fina direct

o

unstable branch as a separatrix. Our analysis also shows that

1.0

=)
* 08 =
= ;5 08 FIG. 18. 1D MQW model. Parameters are as
3 os } Fig. 1. Interaction of two cavity solitons 4E,|
- 2 02 =38.0. Half width at hal maximurtHFHM) of a
S 2 CS is 15 grid pointsx axis: their separation in
Q . . . .
%‘ S o2 terms of number of grid pointy axis: relative
$ o2f . velocity of the solitons(negative when moving
o = apart, units arbitrany For a typical microresona-
> 5 086 . I
£ 00 o tor 1 unit length (u. 1)/unit time (u. t) ~35
K X 10" wm/us.
-0.2 I I 1 -1.0 I I 1 pii s
] 5 10 15 20 20 30 40 50 60

offset (number of grid points)

offset (number of grid points)
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£ £ FIG. 19. 1D bulk model. Parameters are as
5 207 5 Fig. 7. Interaction of two cavity solitons 4E,|
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2 = wise as Fig. 18.
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the unstable soliton is in faanetastablgin that it is an  where their internal eigenmodes are most strongly damped.
attractor for all nearby states except those proportional to itdloreover, a straightforward extension of the method to 2D
single unstable mode. Address pulses will thus spontanegevealed the role of azimuthally asymmetric perturbations.
ously reshape themselves into the shape of the unstable solikdeed the CS dynamics and stability appears governed by
ton (if “nearby” ), before evolving away along its unstable mechanisms whose simplification to one spatial dimension
manifold, either to the stable CS or to the flat solution. implies some loss of information, and our works proceed
In addition we have checked that the evolution of an untoward a full 2D implementation of the method. A further
stable soliton towards a stable soliton has a temporal behavmportant result of the Newton approach is its capability of
ior proportional to €*+'—1) where\ . is the eigenvalue of predicting the effect of perturbations on the CS dynamics
the unstable mode; this occurs up to a time scale long comwhich is ruled by the unstable, neutral, or weakly damped
pared to IX , and is in accordance with E(6.10. The same modes, according to the particular conditions. We derived
happens when the unstable soliton evolves towards the heome helpful indications concerning possible applications of

mogeneous solution. CS to optical information processing. The imposition of a
gradient in the input fieldamplitude or phase has been
VIl. CONCLUSIONS shown to induce a drifting dynamics ruled by the neutral

) . . . mode associated to translations. The CS speed across the
In this work we have applied a seminumerical methodgeyice section can be calculatadpriori using perturbation

developed on fairly simple nonlinear optical modg# to  methods, in good agreement with the simulation approach
investigate cavity soliton properties in a semiconductor mipreviously adoptefi7]. Also, a relevant indication is the fact
croresonator with a bulk GaAs or MQW GaAs/AIGaAs ac- that the short/middle-term dynamics of the unstable CS is
tive layer. This approach not only allows us to find the sta-governed by a single unstable eigenmode. Our analysis indi-
tionary solutions, including CS, as the method adopted insates that the locus of the unstable CS is actually a subspace
[5,7] did, but as a valuable improvement also returns theyrojection of the basin of attraction—in principle very
eigenvalue spectrum and associated eigenvectors, derivgdmplex—of the two stable coexisting solutions: the homo-
from the analysis of the Jacobian of the nonlinear systemngeneous solution and the CS. This indication can be trans-
(3.2. On this basis, the stability properties of the CS haveated into ara priori prediction about the address pulse char-

been thoroughly described. The method is in fact applicablgcteristics, e.g., power and duration, when CS must be
to any type of stationary solution, as forthcoming communi-yritten and erased.

cations will illustrate. The overall indications—by analyses

based on independent approaches—about the existence of

stf_;lb_le CS, their shape ano_l relati_ons Wi_t_h the global structures ACKNOWLEDGMENT

arising from the modulational instability, have thus been

strengthened by the study of the eigenvalue spectrum, ex- This study was carried out within the framework of the
ploiting the role of the neutral mode and evidencing besESPRIT LTR Project PIANOSProcessing of Information
ranges for CS stability. The CS can be said to be strongdny Arrays of Nonlinear Optical Solitons
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